

Satellite and Terrestrial Network Analysis
The Performance of Satellite Spoofing

Joseph Ishac
Advisor: Funda Ergun

Department of Electrical Engineering and Computer Science
Case Western Reserve University

Final Report

December 6, 2000

__

__

__

 2

Abstract
In this paper, we analyze the performance of protocols in a network that consists of both
satelli te and terrestrial components. One method, proposed by outside research, to
improve the performance of network transfers over satelli te is to use a performance
enhancing proxy often dubbed spoofing. Spoofing involves the transparent splitting of a
network connection between the source and destination by some entity within the
network path. In order to analyze the impact of spoofing, we constructed a simulation
suite based around the network simulator ns-2. The simulation reflects a host with a
satelli te connection to the Internet or terrestrial network and all ows the option to spoof
connections just prior to the satelli te. The methodology used in our simulation allows us
to analyze spoofing over a large range of file sizes and under congested conditions, while
prior work on this topic has primarily focused on bulk transfers with no congestion. As a
result of these simulations, we find that the performance gain of spoofing is less
beneficial for smaller sized transfers than gains obtained when transferring large files.

1 Introduction
A growing topic in the past few years has been that of hybrid networks, or networks that
contain both terrestrial and wireless links. While there are many forms of hybrid
networks, the work presented in this paper focuses on the use of a geo-synchronous
satelli te within a network path. More specifically, the satelli te link is located just prior to
the user, similar to a DirectPC model. Although not discussed in this paper, satelli tes do
carry some advantages over traditional cable. However, one of the main disadvantages of
using a satelli te in network communication is the long delay needed to transfer data to
and from the satelli te. Typical delays range on the order of half a second to travel from
the ground to the satelli te and back.
 The Transmission Control Protocol (TCP) is the most widely used transport protocol
for Internet traffic. One TCP feature in particular, congestion control, incorporates a
slow-start mechanism, which is highly susceptible to high delay links [AKO00]. The end
result is a decrease in initial performance, since it takes longer to build up the sending
rate over a long-delay network path. Spoofing, which is discussed in more detail in
Section 2, was introduced mainly for solving such a problem with high delays. However,
prior work on spoofing has focused on simulations of bulk transfers without congestion,
and has thus left an incomplete picture of spoofing’s overall performance. The project
discussed in this paper focuses on creating a simple yet versatile simulation environment,
in which the performance of spoofing can be seen across a large range of file transfers,
while under congestion conditions.
 The remainder of the paper includes Section 2, which discusses spoofing in greater
depth, and Section 3, which outlines the actual simulation mechanics and detail s. Section
4 presents the results of those simulations. Finally, Section 5 summarizes the conclusions
and lists possible areas for future work on this subject.

2 Background
In an attempt to mitigate the disadvantages incorporated with long -latency links,
researchers have been introducing performance-enhancing proxies (PEPs) into networks.

 3

One such PEP that is currently being used in satelli te networks is TCP spoofing [PILC-
ID, I-TCP, ASBD96]. The objective of spoofing involves isolating the long-latency link
by introducing a middle agent which spli ts the TCP connection (see Figure 1). However,
unlike a proxy cache, spoofing is transparent to both the sender and receiver. Thus, the
middle agent, or ‘spoofer’ , takes on the personali ty of both parties. The responsibili ty of
the spoofer is to intercept, cache, and acknowledge data received by the sender and then
forward that data to the receiver. As a result, spoofing does break the end-to-end
semantic of TCP, however while this raises several phil osophical issues [PILC-ID], those
issues are not the focus of this paper. Finally, it is worth noting that in our model data
segments and connection teardowns are spoofed, while connection setup remains end-to-
end.

Figure 1: Satellite Spoofing

3 Simulation Overview

3.1 Terminology
The following terms are explained below and are used throughout this paper:

Flow: A series of transmissions from one host to another.
Packet: A TCP segment

 For these simulations we used three metrics to measure the performance of a network
flow. The first, throughput, is a measure of the time needed to complete a particular
transfer and can be measured from either the sender or receivers perspective. For a
sender side analysis, the time of completion is marked by the reception of the ACK for
the final data packet. Whereas, the time of completion for receiver side analysis is
marked upon transmission of the final ACK. The second metric used is goodput, which
is an indication of what percentage of data packets were unique. Thus a goodput that is
less than one would indicate a transfer that suffered from retransmissions. Since it is
possible to have retransmissions without data loss (e.g. spurious timeout, lost ACK), the
final metric used in the simulation was the calculation of the number of dropped data
packets, or simply drops. The metrics are summarized in Table 1.

 4

Throughput
Unique Packets
Transfer Time

Goodput
Unique Packets
Total Packets

Drops Number of dropped data packets

Table 1: Summary of Metrics

3.2 Topology
The test network consists of five hosts and five routers as shown in Figure 2 below. Each
host is connected to its appropriate router via an Ethernet link and runs TCP with
selective acknowledgements (SACK) [RFC2018, FF96] and delayed ACKs [RFC1122,
RFC2581]. Routers enforce drop-tail queuing on all li nks, but an option for enabling
RED based queuing [FJ93] on both the satelli te and Internet links was implemented. The
thresholds for RED were based on suggestions from [Flo97] and are listed in the routing
equations below. Finally segment sizes of 1500 bytes were used [All00].

Figure 2: Network Topology

Queue Size
 Ethernet = ∞
 Others = (Bandwidth in bytes per second · (2· Delay)) / Segment Size
RED Queuing
 Threshold = 1/5 · Queue Size
 Maximum Threshold = 3/5 · Queue Size

(Only the integer part of the result is taken from all calculati ons)

Equation Set 1: Routing Calculations

 The topology is laid out such that there are distinct satellite and Internet portions.
First, the satelli te is constructed asymmetrically to allow for the possibili ty of a low
powered transmitter. Delay over the satelli te is fixed at 250ms, and the download
capacity set at a T1 rate. The capacity of the transmitter is specified at runtime. The
second major portion of the topology, the Internet model, consists of four nodes. The
link between the two routers acts as the “Internet” , whose bandwidth and delay are also

R1 R2 R3 R4 R5 h1

Satellite
1.5Mb/s 250ms

Ethernet
100Mb/s 0ms

h2 h3 h4

X Mb/s

Y ms

h5

Internet Model

Transmitter
Z Mb/s 250ms

 5

specified at runtime. The two hosts in the model are responsible for generating cross
traffic over the Internet link. Also, even though the model for the Internet is simple and
unrealistic of its real life counterpart, it is sufficient in capturing the basic characteristics
of propagation delay, limiting bandwidth, and competing traffic.
 The remaining hosts are the nodes at which connections of interest will take place.
Using these three hosts, any combination of the hybrid network can be analyzed. More
specifically, host one represents a pure satellite user, and host five represents a user with
a high-speed connection to the Internet. Host two stands at a middle gr ound with access
to both portions of the network. This property also makes host two capable of spoofing
connections as shown in Figure 3.

Figure 3: Spoofing in the Simulator 1

Thus, with spoofing enabled, a connection from host five to one would be spoofed at host
two. It would cache, with infinite capacity, data received from host five and forward the
data to host one.

3.3 Traffic
All transfers used in the simulation make use of the File Transfer Protocol (FTP) to
transmit data. No competing traffic is present on the satellite link as it represents a
dedicated satellite channel2. However, competing traffic is present on the Internet link by
using an analytical FTP generator which is discussed in detail in Appendix A. Traffic
can also be generated by using a trace file to recreate sessions observed on a real
network.

3.4 Software
The simulations in this paper make use of the Network Simulator (ns) [NS] version 2.1b6
with two bug fixes, outlined in Appendix 0. Traffic generation is separated from the
simulation so as to facilitate reuse and modularization. The overall layout of software
structure is shown in Figure 4. The output from ns consists of three trace files which are
uniquely named in relation to the type of simulation being done. This allows the analyzer
to distinguish which traces to analyze and also allows for congruent execution of
simulations. The function of the controller is to synchronize the spawning and execution
of both programs. Finally, a script automates the entire process, synchronizing traffic
generation with the controller and allowing for multiple runs of different case scenarios.

1 Due to simulator restrictions, spoofing could not be done at routers as would likely be the case if it were
implemented in a real network. However, moving it to the host adds only the Ethernet delay which is
neglect able and likely much smaller than any processing delays that would be present in a real system.
2 The satellite in this simulation was based off of the Advanced Communications Technology Satellite
(ACTS), which supported packet switching, spot transmissions, and frequency reuse.

R1 R2 R5 h1

h2

h5 Internet Model

 6

Figure 4: Software Layout

4 Results
The results detailed in the following section are based on a 30 run simulation with the
following characteristics:

- T1 rate for Internet bandwidth: Note that whil e the Internet has a physically larger
capacity than that of a T1, the all ocation of bandwidth is regulated and so an actual
obtainable value is less. Also, earlier test based on this simulation showed that
changes to either the Internet bandwidth or delay have a predictable eff ect on the
measured metrics. Therefore, in order to minimize the effect of extraneous
bottlenecks, a T1 rate was used.

- An Internet delay of 0.069 seconds: This value came from sampling the delay of
several sights at various geographical distances and averaging the result. Again, the
delay does have an effect on the simulations. However, the purpose of these
experiments was not focused on changes to the Internet properties and so the delay is
sufficient in characterizing a typical value.

- T1 rate for transmission to the satelli te: While this rate is much higher than what is
economically feasible for a home user, the effect of variances to the transmission
capacity was not of interest for this set of experiments.

- Transmission of files from the network user (host five) to the satelli te user (host one)
under the following granularity: 0 to 100 packets by 1, 110 to 500 packets by 10, 600
to 900 packets by 100, 1000 to 2000 packets by 1000

- Network variances: Drop-tail and RED queuing, end-to-end TCP connections and
spoofing, sender side and receiver side analysis.

- For the sake of simplicity, end-to-end TCP is referred to as ‘Regular’ TCP in any
subsequent plots.

Figures 5 and 7 show the throughput of the main flow (h5

�
h1) from either the

receiver or sender side respectively. The different setup combinations between the
queuing and PEP types represent the four curves on the plot. From the two plots we
can see that, with our simulations, the use of RED based queuing has little eff ect on
throughput in either case. Also, in the long run the steady state throughput values are
nearly the same regardless of whose viewpoint is taken (as one would expect).

S im u lation H ierarch y

Traf f i c Generator
(C L anguage)

Generates competi ng FTP traf f i c
based on vari ous d i str i but i ons

The N etwork Si mul ator
ns

U ni versit y of C al i f orn i a
B erkel ey, CA

A nal yzer
(C L anguage)

U sed to anal yze
output f rom ns

C ontrol l er
(C L anguage)

Synchroni zes ex ecuti on
A ll ow s for si mult aneous si mul at i ons

Scri p t

 7

Figure 5: Throughput vs. Transfer Size (Receiver)

Figure 6: Percent Difference of Th roughput (Receiver)

 Figures 6 and 8 show the percent difference of the throughput that was shown in
figures 5 and 7. The percent difference was calculated by taking the throughput
difference of spoofing and end-to-end TCP over the throughput of end-to-end TCP. In
general:
 Percent Difference = (PEP - Base) / Base,
Where the base in this case would be the throughput obtained from end-to-end TCP.
Thus, the line identified as “DropTail” in the plot refers to the percent difference between
“Regular-DropTail” and “Spoofing-DropTail” . For metrics, such as throughput, where a
larger value indicates better performance, a positive percent difference indicates that the
PEP outperformed the base condition, while a negative value indicates the exact opposite.

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transfer size in 1500 byte packets

P
er

ce
n

t
D

if
fe

re
n

ce

DropTail RED

-20.00%

-10.00%

0.00%

10.00%

20.00%

0 10 20 30 40

Receiver Side

����
�
�
�
�
�
�
� �
� �
� ���������� �� �� ���������� � ���������� �� ���������� �

� �
� �

�
�
�
�
�
�
�
�
�
�
���� �� ���������� �� �� ��������� �� �� ���������� �� ���������� �

� � �
� � �

� �� � �� �� �� �
� �
� �

� �� �� �� � � �� �
� �
� �

� �� �� �� �� � � �� �
� �
� �

� �
� �

� �� �� �� �� � � �� �� �� �� �� �� �� � � �� �� � �� � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �

� �
� �
� �
� �

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transfer size in 1500 byte packets

T
h

ro
u

g
h

p
u

t
(b

yt
es

/s
ec

)

(Regular)DropTail (Regular)RED (Spoofing)DropTail
� � � � � � � � � � �

(Spoofing)RED

Receiver Side

 8

Figure 7: Throughput vs. Transfer Size (Sender)

Figure 8: Percent Difference of Throughput (Sender)

Also included in the percent difference plot is an enlarged view of transfers consisting of
40 packets or less. The importance of considering small transfers is shown in Figure 9.3
From this plot, we see that transfers consisting of ten packets or less account for 90% of
the network traffic. Also, although the data represents only a single network, the
underlining concept has been generally noted in other networks as well.
 Plots for goodput and drops were included in Appendix C so as to not clutter the main
document. These plots follow the general principle of that seen with throughput,
although both goodput and drops are independent of viewpoint. Also, unlike throughput
and goodput, a positive percent difference in the number of drops indicates that the base
condition outperforms the PEP since an increase in drops is unfavorable.

3 Cumulative Distribution Function (CDF) of network transfer sizes in packets as seen at the NASA GRC
firewall on October 30, 2000.

���
�
�
�
�
�
�
�� �� ���������� �� ����������� � ���������

� �
� �
� �
� �

�
�
�
�
������� �� ���������� �� ���������� �� �� ��������� �� �� ������

�
�
�
�
�
�
� �
� �
� ���������� �� � �� �� � �

� �
� �

� �� �� �� �� �
� �
� �

� � � �� �� �� �� �� �
� �
� �

� � � �� �� �� �� �� �� �� �
� �
� �

� �� �� �� �� �� �� �� � � �� �� � �
� � �
� � �

� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �

� �
� �
� �

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transfer size in 1500 byte packets

T
h

ro
u

g
h

p
u

t
(b

yt
es

/s
ec

)

(Regular)DropTail (Regular)RED (Spoofing)DropTail
� � � � � � � � � � �

(Spoofing)RED

Sender Side

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transfer size in 1500 byte packets

P
er

ce
n

t
D

if
fe

re
n

ce

DropTail RED

-20.00%

0.00%

20.00%

40.00%

60.00%

0 10 20 30 40

Sender Side

 9

Figure 9: Distribution of Transfer Sizes

 From the percent difference plots we can see that spoofing has very different effects
depending on which vantage is used. From the receivers viewpoint, there is little effect
for very small transfers and at most a 10% gain for transfers of ten packets or less.
However, from the sender’s perspective, the gain is much larger for those same small
transfers. The large gain in throughput for the senders could be very beneficial for busy
web servers. By freeing resources associated with long-delay connections quickly, it
allows servers to satisfy more requests. Again, in the long run, both viewpoints show
relatively the same performance gain. Both graphs contain some turbulence. Turbulence
reffers to several short and successive increases and declines, which can be attributed to
the fact that the throughput values were an average of 30 runs and that the variance was
very large. However, the dip in throughput found around 400 packets in Figure 6 is
rather unusual. One possible cause is that the spoofer receives data more quickly, and
thus overruns the satelli te channel, dropping a large number of packets. This is possible
since spoofing allows the rate of incoming packets to increase over the Internet and
accumulate at the spoofer, which is still in early slow -start. Thus, spoofing adds a second
bottleneck into the network path. The plot of drops shows a sharp increase around 400
packets when spoofing is used, which is supportive of this claim.

5 Conclusions and Future Work
As a result of our simulation, we found that spoofing is indeed beneficial for large file
transfers. For small transfer sizes, spoofing greatly increased the throughput seen by the
sender, but was much less beneficial for throughput observed at the receiver , which is the

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1e+06 1e+07

Transfer Size (packets)

C
D

F

 10

vantage point perceived by the end-user. Since a majority of data sent across networks is
small, spoofing will not provide much advantage to a standard home user. However,
benefits to web servers and other content providers would be significant. Also, spoofing
allows for data to accumulate at the spoofer, creating a second bottleneck and increasing
the number of dropped data packets, which also degrades the receivers perceived
performance.
 We realize that the work done in this paper reflects simulations and not actual data
measurements on real networks. Thus, a natural extension of this work may involve
implementing these simulations in actual network test beds. Other extensions involve the
inclusion of other types of PEPs as well as the effect of changes to the asymmetry of the
satelli te and to the characteristics of the Internet.

6 Acknowledgements
I would like to thank Mark Allman for providing the solution for the RTO bug within ns-
2 and for the plot of transfer sizes at NASA. Also, I would like to thank both Mark
Allman and Funda Ergun for commenting on earlier drafts of this report, and for
continuous support and guidance with this work in general.

This work was supported by the NASA Glenn Research Center in conjunction
with Case Western Reserve University under award number NAG3-2391.

References
[AKO00] M. Allman, H. Kruse, and S. Ostermann, “A History of the Improvement

of Internet Protocols Over Satellites”, Proceedings of the ACTS Conference
2000, May 2000

[All00] M. Allman, “A Web Server’s View of the Transport Layer” , ACM
Computer Communication Review, 30(5), October 2000

[ASBD96] Vivek Arara, Narin Suphasindhu, John S. Baras, and Douglas Dill on,
“Asymmetric Internet Access Over Satellite-Terrestrial Networks” ,
Proceedings of the AIAA: 16th International Communications Satellite
Systems Conference and Exhibit, Part1, pp. 476-482, Washington, D.C.,
February 1996

[FF96] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and
SACK TCP”, Computer Communications Review, 26(3), pp. 5-21, July
1996

[FJ93] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking, 1(4), pp.
397-413, August 1993

[Flo97] S. Floyd, “RED: Discussions of Setting Parameters” , November 1997
http://www.aciri.org/floyd/REDparameters.txt

[I -TCP] A. Bakre, B.R. Badrinath, "I-TCP: Indirect TCP for Mobile Hosts",
Proceedings of the 15th International Conference on Distributed
Computing Systems, May 1995

[NS] VINT project: http://www.isi.edu/nsnam/vint/index.html
[PILC-ID] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Performance

Enhancing Proxies” , Internet-Draft, November 2000
draft-ietf-pilc-pep-05.txt

 11

[RFC1122] R. Braden, “Requirements for Internet Hosts -- Communication Layers” ,
RFC 1122, October 1989

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options” , RFC 2018, October 1996

[RFC2581] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control” , RFC
2581, April 1999

Appendix

A FTP Traffic Generation

A.1 Introduction
The FTP Application-Level Traffic Generator (ALTGen-F) is a tool that can be used to
describe realistic FTP traffic across network paths. ALTGen-F is a stand-alone tool that
generates a traffic profile, which can be used in conjunction with various applications
such as simulators or measurement tools used in real networks.

The traffic profile produced by ALTGen-F is based on mathematical models which
incorporate both observations seen across real networks and the reasoning behind those
observations [Pax94]. In comparison, empirical models are inflexible and rehash what
was seen without endeavoring into the reasons behind the data. Also, simple
mathematical models tend to fail to capture any complexity within the data.

In the area of network simulation, the process of generating traffic is often overlooked
[PF97]. Often, traffic consists of a stream of uniform data or is generated from an
oversimplified model. Such representations fail to capture the key characteristics of the
protocols. This generator was created in order to produce traffic that better models the
main characteristics and traits of the FTP protocol.

A.2 FTP Traffic Generation

A.2.1 Terminology and details

The following terms are explained below and are used throughout this report:

Flow: A network path which hosts a set of FTP sessions.

Flows are independent of each other.
Session: All occurrences within a specific invocation of a FTP application.
Connection: A single data transfer within a session. All connections utili ze the

Transmission Control Protocol (TCP).
Inter-connection time: Time between the end of one data connection and the start of the

next within the same session.
Delay between connections: Same as Inter-connection time.
Burst: A series of connections whose inter-connection times are at most 4 seconds

[Pax94].
Load: The number of sessions to generate.

 12

Using this vocabulary set, an example FTP session is shown in Figure 10 below.

Figure 10: Example FTP session

A.2.2 Distributions

Aside from the standard distributions, several other distributions are used as follows:
Pareto Distribution
A skewed, heavy-tailed distribution whose distribution function is defined as

F(x) = 1 - (k/x)α, (1)
where α is the shape of the distribution and k is a scaling factor.
Log2-Normal Distribution
A log2-normal distribution refers to a random variable which follows a normal
distribution after first applying a logarithmic transformation (in this case log base 2).
Thus if random variable Y = log2 (X) ~ Normal (µ,σ), then X ~ Log2-Normal (µ,σ).

A.2.3 Algorithm

The following algorithm describes the steps used to generate a FTP traffic profile:
I) Preprocessing

Preprocessing validates the program’s parameters and writes a small header to the
traffic profile.

II) Generate the Traffic
1) Flow Identification

Flow identification is used to identify which sessions belong to which flow.
Flows range in ID from zero to one less than the total number of flows. The ID is
incremented for each session and follows the following formula in general:

2) Session Start Time Calculation

No session will start at time zero, unless the initial calculation yields an initial
increment of zero. The time between successive session starts for a particular
flow is based on a Poisson distribution with a user-specified mean. A smaller
mean will yield more condensed traffic, while a larger value will yield more

For N flows,
session[k] corresponds to flow[k mod N]
where k=0, 1, 2, … , (Load - 1)

Data Transfer

Burst

Session

Number of connections = 5
Session Size = 35 packets

4 5 2 21 packets 3

Inter-connection Time

5 sec.

 13

sparse traffic. [PF95] shows that the time between FTP sessions is well modeled
as a Poisson distribution.

3) Session Size Calculation

The current session size in bytes is calculated using a Log 2-Normal distribution
[Pax94]4. Thus,

4) Generation of Connections within a Session

Any given connection is defined by a Log2-Normal distribution.

A connection, Ci, is calculated, and its size in bytes is added to the cumulative
sum of all previous connections for that session. If the total is less than the size of
the session, this step is repeated. If it is not, the connection is truncated so that the
total number of bytes in the connections is equal to the session size. This
introduces a slight bias to the connection size calculation. While the shape of the
generated distribution remains the same, the average is shifted downward slightly
as a result of the truncations. Also, due to memory considerations for both the
simulator and generator, the total number of connections may be restrained and an
appropriate warning message displayed.5

5) Calculation of Bursts
The calculation of bursts is a complicated procedure that relies on two different
distributions. First, a Log2-Normal distribution is used for the top 95 percentile.
The remaining bursts are characterized by a Pareto distribution. The procedure
(see Figure 11) goes as follows:

For every connection in the session (in order of occurrence):
If the current connection is the first connection or the previous connection is
marked as non-burst, calculate a new burst size, B, based off of the two part
distribution. If the difference between the current connection size and the burst
size is greater than or equal to zero, then the current connection is marked as
burst, and the difference between the current connection size and the burst size
becomes the new B. Move to the next connection and repeat.

4 Values for the parameters in the session, connection, and burst size calculations are those used in [Pax94].
However, they are easily changeable within the code if adjustment to the model becomes necessary.
5 The restraint is specified within the program, but can be modified if necessary.

Session Size = 2R, where R~Normal(µsession, σsession)

time i (Session[k]) = time i (flow[k mod N])
 = time i-1 (flow[k mod N]) + Poisson (mean start time)

Connection, Ci = 2R, where R~Normal(µconnection, σconnection)

 14

Figure 11: Example of burst calculation

6) Calculation of Delays between Connections

The calculation of delay between data connections contains models not discussed
in [Pax94] and is discussed in greater detail in § 3.

A burst by definition is a series of connections separated by less than four seconds
[Pax94]. Thus, for any two consecutive connections within a burst a time
between zero and four is generated. For any other combination of connections, a
time greater than four is generated. The model used in generating these values
consists of three different distributions - Log2-Normal, exponential, and uniform -
and are listed in the table below. Finally, if a delay is observed to be zero, it is
adjusted by one nanosecond since zero delays cannot exist in many simulators.

0 - 2.5 seconds Exponential (0.616)
Bursts

2.5 - 4 seconds Uniform (2.5, 4)
Non-Bursts 4 - 180 seconds Log2-Normal (3.27, 2.16)

7) Generate the Report for the Session

A report for the session is generated, where the start time is an offset in seconds
from the start of the simulation and not the time between sessions. All sends are
the number of packets to transmit, which correspond to the number of bytes that
were calculated previously and the packet size used in the simulation. Finall y, all
delays are in seconds. The format of the report is shown below.

Figure 12: Report format

8) Reset sizes and Repeat

Step two is repeated for the desired number of sessions.

Line/Session
Number

Flow
ID

Start
Time

Initial
Send

[Subsequent
Sends …]

[Delays …]
Number of

Connections

Connection
(Non-Burst)

Connection
(Burst)

Burst Size
Calculation

 15

A.3 Modeling Delays Between Connections
One of the characteristics absent from the models in [Pax94] was a detailed analysis of
the time between connections within a session. Thus, independent analysis was done
using the same LBL-7 dataset used in [Pax94]. Since the times extracted from the data
set were extremely skewed, a base two logarithmic transformation was applied to the
data. The result (see Figure 13) showed a distinct bi-modularity to the data, with the split
occurring roughly around 2.5 seconds. The data above this split fit very well to a normal
distribution and resulted in an overall Log2-Normal distribution. The data below the split
was less behaved and seemed dependent on factors such as round trip times and process
scheduling.

Figure 13: Time between connections after log base 2 transformation (LBL-7 Dataset)

After some analysis a model consisting of two parts was derived using the data before the
transformation. An exponential model was used for data less than 2.5 seconds, and a
uniform model was used for data between 2.5 and 4 seconds. A simulation was then run
and the results of the simulation were plotted against the cumulative distribution function
(CDF) of the original data set, as shown in Figure 14 and Figure 15.

Histogram

0

200

400

600

800

1000

1200

1400

1600

1800

0.
00

07
26

0.
00

37
13

0.
01

89
87

0.
09

70
97

0.
49

65
47

2.
53

93
15

12
.9

85
91

8

66
.4

09
26

1

33
9.

61
32

68

17
36

.7
63

37
6

88
81

.7
11

37
2

Bin: Time (sec)

F
re

q
u

en
cy

.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency

Cumulative %

> 4 sec< 4 sec

 16

Figure 14: CDFs of the time between connections for both the LBL -7 and Generated datasets

Figure 15: CDFs of the times after a log base 2 transformation

CDF

.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

Time (Seconds)

C
D

F

LBL-7 Generated

Transformed Data

.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.
00

06
9

0.
00

10
5

0.
00

15
9

0.
00

24
0

0.
00

36
4

0.
00

55
2

0.
00

83
7

0.
01

26
9

0.
01

92
4

0.
02

91
6

0.
04

41
9

0.
06

69
9

0.
10

15
3

0.
15

38
9

0.
23

32
6

0.
35

35
5

0.
53

58
9

0.
81

22
5

1.
23

11
4

1.
86

60
7

2.
82

84
3

4.
28

70
9

6.
49

80
2

9.
84

91
6

14
.9

28
53

22
.6

27
42

34
.2

96
75

51
.9

84
15

78
.7

93
24

11
9.

42
82

2

18
1.

01
93

4

Bin: Time (sec)

C
D

F

LBL-7 Generated

 17

It should be noted that the generated model tracks the original well 6 but is smoother due
to the use of mathematical models.

A.4 Future Work
While this tool currently supports FTP traffic only, it was written with the hope of
extending it to other applications such as HTTP. Thus, the design loosely supports the
addition of other traffic models. Also, while analysis of the inter-connection model is
based primarily on the LBL-7 dataset, it would be valuable to test the current model on
additional, more recent traces. Another interest is the effect that round trip times have on
inter-connection times. Such an analysis would require a packet level trace of network
activity, which was unavailable at the time of the analysis.

A.5 Conclusion
This tool generates FTP sessions based on models which incorporate the key
characteristics of the protocol. By generating traffic that behaves off characteristics
found at the application level, this tool will all ow for a better analysis of other network
issues. Finally, the traffic profile generated can be used alongside a variety of
applications and tools.

A.6 Acknowledgements
I would like to thank Mark Allman for his continuous support and guidance with this
work. Also, I would like to thank Vern Paxson for both the LBL-7 dataset and for taking
time to discuss the work, and Mark Allman and Funda Ergun for commenting on earlier
drafts of this report.

This work was supported by the NASA Glenn Research Center in conjunction with Case
Western Reserve University under award number NAG3-2391.

References
[Pax94] V. Paxson, “Empirically-Derived Analytic Models of Wide-Area TCP

Connections” , IEEE/ACM Transactions on Networking, 4(2), pp. 316-336,
August 1994

[PF97] V. Paxson and S. Floyd, “Why We Don’t Know How to Simulate the
Internet” , Proceedings of the 1997 Winter Simulation Conference, Atlanta,
Georgia, December 1997

[PF95] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson
Modeling” , IEEE/ACM Transactions on Networking, 3(3), pp. 226-244,
June 1995

6 Deviations are no more than +2.5% to -0.5% at any given point.

 18

B NS Bug Fixes

B.1 Delayed ACK Timeout
Problem:
This bug arises when resetting a connection that uses delayed acknowledgements. The
ACK transmission timeout is not cancelled when a connection is reset. Also, resetting a
connection clears any pending ACKs, which are saved globally. However, since the
timeout is not cancelled correctly, upon expiration the simulator attempts to access a
packet that no longer exists. The result is a fatal error and an ungraceful termination.
Solution:
A reset function for the delayed ACK sink is written to override the base class reset
function (TCP sink). The new method correctly resets the ACK timer and calls upon its
parent to finish the remaining portion of the reset routine. Also, several checks for null
pointers were needed in other areas of the code.

B.2 Retransmission Timeout Calculation
Problem:
This bug arises when resetting a connection. The retransmission timeout (RTO)
sampling index is not updated correctly when resetting a connection. The result is an
incorrect sampling of path delay, which yields very large RTOs.
Solution:
Modify the reset method to correctly update the RTO sampling index to its initial value.

 19

C Additional Results

Figure 16: Goodput vs. Transfer Size

Figure 17: Percent Difference of Goodput

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�� �����
�
�
��
��
���� �� ���������� �� ���������� �� �������

�
�
�
�
�
� �
� �
� �������

�
�
�
�� �� �
� �

�
��������� �� ��������

��� �� �
� ����

����
���
�� �� ������

�����
�� �� ���

�
�
���
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �

� �� �� �
� �
� �

� �� �� �
� �
� �

� �� �� �� �� �� �
� �
� �

� �
� �

� �� �� �� �� �� �� �� �� � � �� �
� �
� �

� �� �� �� �� � � �� �� � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �
� �
� �

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transfer size in 1500 byte packets

G
o

o
d

p
u

t

(Regular)DropTail (Regular)RED (Spoofing)DropTail

� � � � � � � � � � �
� � � � � � � � � � � (Spoofing)RED

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transfer size in 1500 byte packets

P
er

ce
n

t
D

if
fe

re
n

ce

DropTail RED

-4.00%

-2.00%

0.00%

2.00%

4.00%

0 5 10 15 20 25 30 35 40

 20

Figure 18: Number of Drops vs. Transfer Size

Figure 19: Percent Difference of Drops

�������� �� ���������� �� � ��
�
�
�
�
�
�
�
�
�
�
�
�
� �
� �
� �
� �

�
�
�
�
�
�
�
�
����� �� ���������� �� ���������� �� ���������� �� ���������

� �
� �
� �
� �

�
�
�������� �� ���������� �� �

�
�
� �
� �

� �� �� �� �� �� � � �� �� �� �� �� �� �� � � �� �� �� �� �� �
� �
� �

� �
� �

� �� �� �� �� �
� �
� �

� �� �
� �
� �

� �� �
� �
� �

� �� �� �
� �
� �

� �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �� � � � � � � � � � �

� �
� �
� �

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transfer size in 1500 byte packets

D
ro

p
s

(Regular)DropTail (Regular)RED (Spoofing)DropTail
� � � � � � � � � � � �

(Spoofing)RED

-150.00%

-100.00%

-50.00%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Transfer size in 1500 byte packets

P
er

ce
n

t
D

if
fe

re
n

ce

DropTail RED

